

Mobile Application for Field Agents

Architecture & General Design Specification
January 2014

Status: Draft
Version 0.2

Bfsi Software Consulting Pvt. Ltd.
Bangalore, India

Document Control

Author: Vidyut Kapur

Created on : 6-Jan-2014 Revision No :

Updated by : Reviewed by : Approved by:

Updated on : Reviewed on : Approved on :

Version
No.

Date Author Reviewed By Status Comment

0.1 31-Jan-14 Vidyut Draft

0.2 11-Feb-14 Vidyut Draft

Table of Contents

1 INTRODUCTION ... 4

1.1 ORGANIZATION OF THE DOCUMENT .. 4

1.2 INTENDED AUDIENCE... 4

1.3 EXCLUSIONS ... 4

1.4 ACRONYMS AND ABBREVIATIONS ... 4

1.5 CONVENTIONS USED ... 5

2 SYSTEM ARCHITECTURE .. 6

2.1 MAIN SYSTEM COMPONENTS ... 6

2.2 FUNCTIONAL ARCHITECTURE OF THE MBS ... 7

2.3 FUNCTIONAL ARCHITECTURE OF THE IBS ... 9

2.4 TECHNICAL ARCHITECTURE OF THE MBS ... 12

2.5 TECHNICAL ARCHITECTURE OF THE IBS ... 13

3 DESIGN NOTES ... 16

3.1 MBS DATA STORAGE ... 16

3.2 MBS ENCRYPTION STRATEGY ... 17

3.3 MBS ERROR AND DEBUG LOGGING ... 21

3.4 USAGE OF TEMPLATES IN THE IBS ... 22

3.5 THE ANATOMY OF A SYNCH SESSION ... 24

Page 4 of 28

<<Bank
Name>>

1. Testing

 Imple

©
 2

0
1
2
 b

fs
i
s
o
ft
w

a
re

 c
o
n
s
u
lt
in

g
 p

v
t.

lt
d
 -

 A
ll

ri
g

h
ts

 r
e
s
e
rv

e
d
.
N

o
 p

a
rt

 o
f

th
is

 w
o
rk

 m
a

y
 b

e
 r

e
p
ro

d
u
c
e
d
,
s
to

re
d
 i
n

 a

re
tr

ie
v
a
l
s
y
s
te

m
,

o
r

tr
a
n
s
m

it
te

d
 i
n
 a

n
y
 f

o
rm

 o
r

b
y
 a

n
y
 m

e
a
n
s
,

e
le

c
tr

o
n
ic

,
m

e
c
h
a
n
ic

a
l,
 p

h
o
to

c
o
p
y
in

g
,
re

c
o
rd

in
g
 o

r
o
th

e
rw

is
e
,
w

it
h
o
u
t
th

e
 p

ri
o

r
w

ri
tt
e
n
 p

e
rm

is
s
io

n
 o

f
b
fs

i
s
o
ft
w

a
re

 c
o
n
s
u
lt
in

g
 p

v
t.
lt
d

 BFSImAx – Architecture Document

1 INTRODUCTION

1.1 Organization of the Document

 The first chapter of this document gives an introduction with brief background and
organization of the document.

 The second chapter describes the main system components and covers the overall
architecture of each component

 The third chapter contains details of some specific technical features of the system.
These details, while not providing a comprehensive design, serve as a guide when
designing the system.

1.2 Intended Audience

This document is meant for an internal audience.

- Developers can use it to get an overall perspective on the system
- Designers can use it to include the contents of Chaapter 3 in their design effort,
- Marketers can base some of their product collateral on it and
- Senior management understand the technical approach and the main components

by reading this.

1.3 Exclusions

 This document is not intended to be a functional specification document. While the

functional architecture sections briefly refer to the system functionality, a complete
description of the system functions can be found only in the FS.

 This document describes the overall technical architecture of the system and outlines
the design approach to some of the technical aspects of the system. However, it is not
a design document. It is intended to be a precursor to a full fledged design document
which will follow.

1.4 Acronyms and Abbreviations

MBS Mobile Banking System

IBS Intermediate Banking System

CBS Core Banking System

Bfsi Bfsi software consulting pvt. Ltd.

LOV List of Values

STP Straight Through Processing

Page 5 of 28

<<Bank
Name>>

1. Testing

 Imple

©
 2

0
1
2
 b

fs
i
s
o
ft
w

a
re

 c
o
n
s
u
lt
in

g
 p

v
t.

lt
d
 -

 A
ll

ri
g

h
ts

 r
e
s
e
rv

e
d
.
N

o
 p

a
rt

 o
f

th
is

 w
o
rk

 m
a

y
 b

e
 r

e
p
ro

d
u
c
e
d
,
s
to

re
d
 i
n

 a

re
tr

ie
v
a
l
s
y
s
te

m
,

o
r

tr
a
n
s
m

it
te

d
 i
n
 a

n
y
 f

o
rm

 o
r

b
y
 a

n
y
 m

e
a
n
s
,

e
le

c
tr

o
n
ic

,
m

e
c
h
a
n
ic

a
l,
 p

h
o
to

c
o
p
y
in

g
,
re

c
o
rd

in
g
 o

r
o
th

e
rw

is
e
,
w

it
h
o
u
t
th

e
 p

ri
o

r
w

ri
tt
e
n
 p

e
rm

is
s
io

n
 o

f
b
fs

i
s
o
ft
w

a
re

 c
o
n
s
u
lt
in

g
 p

v
t.
lt
d

 BFSImAx – Architecture Document

1.5 Conventions Used

 At various places in the document, links to appropriate pages on various web sites

have been provided. These links are refer to the original information which
amplifies the statement being made and are a mechanism to keep the document
short by not reproducing that information here. Readers interested in greater detail
can follow those links and others can simply read on - the document is intended to
be under stood even if these links are not followed.

 At times these links refer to snippets of code which can be used by developers to

understand usage of a particular design mechanism being proposed. It is not
necessary that these snippets provide the best coding example. The most
appropriate design/coding should e decided during the detailed design.

 At various places in the document, coding guidelines have been
mentioned (preceded by the sign shown here). These guidelines have been
formulated so that the architecture is consistently followed and its benefits accrue
to the system. At any point in the development, if developers feel they need to
deviate from a particular coding guideline, they should discuss and change the
architectural principle from which that guideline follows rather than simply violate
it.

Page 6 of 28

<<Bank
Name>>

1. Testing

 Imple

©
 2

0
1
2
 b

fs
i
s
o
ft
w

a
re

 c
o
n
s
u
lt
in

g
 p

v
t.

lt
d
 -

 A
ll

ri
g

h
ts

 r
e
s
e
rv

e
d
.
N

o
 p

a
rt

 o
f

th
is

 w
o
rk

 m
a

y
 b

e
 r

e
p
ro

d
u
c
e
d
,
s
to

re
d
 i
n

 a

re
tr

ie
v
a
l
s
y
s
te

m
,

o
r

tr
a
n
s
m

it
te

d
 i
n
 a

n
y
 f

o
rm

 o
r

b
y
 a

n
y
 m

e
a
n
s
,

e
le

c
tr

o
n
ic

,
m

e
c
h
a
n
ic

a
l,
 p

h
o
to

c
o
p
y
in

g
,
re

c
o
rd

in
g
 o

r
o
th

e
rw

is
e
,
w

it
h
o
u
t
th

e
 p

ri
o

r
w

ri
tt
e
n
 p

e
rm

is
s
io

n
 o

f
b
fs

i
s
o
ft
w

a
re

 c
o
n
s
u
lt
in

g
 p

v
t.
lt
d

 BFSImAx – Architecture Document

2 SYSTEM ARCHITECTURE

This chapter describes the main system modules and the overall architecture of each module.

2.1 Main System Components

The primary purpose of the BFSImAx system is to enable agents to do banking transactions with
customers even though they may have little or no connectivity to the bank’s centralised IT
infrastructure while doing so. BFSImAx enables this via its Mobile Banking System, which runs on
any Android based tablet or smartphone and allows off-line transactions.

However, the Mobile Banking System is not sufficient to enable the agent transactions. A system is
required to manage the agents and devices which are out in the field, to co-ordinate their activities
with the bank and its customers. This mandates the existence of a centrally deployed Intermediate
Banking System which bank officers use to manage agents, devices and the transactions done by
those agents.

When offline transactions are being done in the MBS (which is deployed on several devices) and
there is an IBS (which is centrally deployed) to manage those transactions, then there exists a need
to synchronise the data flow between these two system. Hence a major component of BFSImAx is
the synchronization between the MBS and the IBS.

The CBS is the gold repository of all customers and accounts, including the balance, status and
transaction history of the account. This data needs to flow to the MBS, just as the transactions done
in the MBS need to be sent to the CBS. The IBS performs the task of intermediating this exchange,
thereby necessitating the development of an interface between the IBS and the CBS.

Page 7 of 28

<<Bank
Name>>

1. Testing

 Imple

©
 2

0
1
2
 b

fs
i
s
o
ft
w

a
re

 c
o
n
s
u
lt
in

g
 p

v
t.

lt
d
 -

 A
ll

ri
g

h
ts

 r
e
s
e
rv

e
d
.
N

o
 p

a
rt

 o
f

th
is

 w
o
rk

 m
a

y
 b

e
 r

e
p
ro

d
u
c
e
d
,
s
to

re
d
 i
n

 a

re
tr

ie
v
a
l
s
y
s
te

m
,

o
r

tr
a
n
s
m

it
te

d
 i
n
 a

n
y
 f

o
rm

 o
r

b
y
 a

n
y
 m

e
a
n
s
,

e
le

c
tr

o
n
ic

,
m

e
c
h
a
n
ic

a
l,
 p

h
o
to

c
o
p
y
in

g
,
re

c
o
rd

in
g
 o

r
o
th

e
rw

is
e
,
w

it
h
o
u
t
th

e
 p

ri
o

r
w

ri
tt
e
n
 p

e
rm

is
s
io

n
 o

f
b
fs

i
s
o
ft
w

a
re

 c
o
n
s
u
lt
in

g
 p

v
t.
lt
d

 BFSImAx – Architecture Document

2.2 Functional Architecture of the MBS

The MBS is the system used by agents in the field. Since it allows an agent to work offline, it contains
all the data required by the agent to decide what transactions need to be done. In addition, the
transaction capture functionality has been built in such a way that transactions can be recorded and
stored on the device until connectivity is available.

Transactions Layer

The purpose of the BFSImAx – MBS is to enable agents to do transactions in the field and this layer
enables agents to do precisely that. It contains screens to do the various kinds of transactions
supported by the system e.g. loan disbursal and loan repayment in release 1.0, foreign currency
purchase and sale in the next release and transactions related to deposits and other banking
products in later releases. Any time new transactions are to be supported by BFSImAx, this layer will
certainly need to be enhanced.

In the larger scheme of things, any such transaction impacts customers of the bank, their accounts
and the financials of the bank – e.g. withdrawals impact a savings account, repayments impact a loan
account and foreign exchange transactions impact the bank’s balance sheet. However, the MBS
treats these transactions as complete in themselves and leaves the propogation of their effect to the
server side systems - e.g. when the agent records a repayment or disbursal transaction the MBS
does not concern itself with the resultant change in status of the loan account. Instead, it merely
sends the transaction to the IBS in the next synchronization.

Page 8 of 28

<<Bank
Name>>

1. Testing

 Imple

©
 2

0
1
2
 b

fs
i
s
o
ft
w

a
re

 c
o
n
s
u
lt
in

g
 p

v
t.

lt
d
 -

 A
ll

ri
g

h
ts

 r
e
s
e
rv

e
d
.
N

o
 p

a
rt

 o
f

th
is

 w
o
rk

 m
a

y
 b

e
 r

e
p
ro

d
u
c
e
d
,
s
to

re
d
 i
n

 a

re
tr

ie
v
a
l
s
y
s
te

m
,

o
r

tr
a
n
s
m

it
te

d
 i
n
 a

n
y
 f

o
rm

 o
r

b
y
 a

n
y
 m

e
a
n
s
,

e
le

c
tr

o
n
ic

,
m

e
c
h
a
n
ic

a
l,
 p

h
o
to

c
o
p
y
in

g
,
re

c
o
rd

in
g
 o

r
o
th

e
rw

is
e
,
w

it
h
o
u
t
th

e
 p

ri
o

r
w

ri
tt
e
n
 p

e
rm

is
s
io

n
 o

f
b
fs

i
s
o
ft
w

a
re

 c
o
n
s
u
lt
in

g
 p

v
t.
lt
d

 BFSImAx – Architecture Document

Agent Amenities Layer

Other than recording the actual transactions, agents require other features too from the system which
help them do transactions – features which typically help them before or after a transaction. For
example,

- When an agent is starting out her day, she may want to know her agenda for the day
- When the agent is at a particular location, she may want to review all the disbursals and

repayments due at that location
- She may want to know her current cash position so that she can tally it with the physical cash

in her hand
- Prior to doing a transaction with a new customer, she may want to view his/her photograph

All such features, which help an agent plan, manage and review her work, are part of this layer of the
MBS. Generally speaking, the features of this layer do not change or record any data. Instead, they
present the agent with various views of the data. The cash position functionality (wherein every
transaction updates the agent’s current cash position) is an exception.

When designing this layer, it should be kept in mind that most of the functions of this layer are
components which provide some functionality which is common across several or all the transactions
done on the device – including transactions to be built in the future. E.g. the agent’s agenda shows
loan disbursals and repayments today but in the future it may also show matured deposits and
scheduled meetings – if deposits and group meeting related features are added to the system. The
design of every feature in this layer should be done with this requirement in mind.

 When coding the IBS Data layer and the Transactions layer, developers should adhere to
the standard interface mechanism laid down by every feature of these layers and not deviate from
that.

IBS Data Layer

The BFSImAx – MBS system does a lot more than just allow agents to record transactions. It helps
them in their work by

- creating their daily agenda,
- allowing them to verify customer details and view account history,
- increasing transaction accuracy by pre-populating key values in the transaction screens etc.

In order to do all this, the MBS needs to keep upstream data on customers, accounts and rates etc.
For example it needs the schedule of upcoming repayments to present a daily agenda, it needs the
customer address & photograph for the agent to view and it needs loan account numbers and
disbursement amounts to pre-populate them in the disbursement transaction screen.

This data is received from the Intermediate Banking System and never updated by the MBS. While
the MBS is not intended to contain the complex business logic of updating this data, it does read this
data and does whatever little processing is required to use it as described above.

Infrastructure Layer

This is the most basic layer of the MBS and contains functionality which is not complete in itself – and
which is not useful to a user unless coupled with a system transaction or query. It provides basic
building blocks to be used by all other layers. Some of the features provided by this layer are:

Page 9 of 28

<<Bank
Name>>

1. Testing

 Imple

©
 2

0
1
2
 b

fs
i
s
o
ft
w

a
re

 c
o
n
s
u
lt
in

g
 p

v
t.

lt
d
 -

 A
ll

ri
g

h
ts

 r
e
s
e
rv

e
d
.
N

o
 p

a
rt

 o
f

th
is

 w
o
rk

 m
a

y
 b

e
 r

e
p
ro

d
u
c
e
d
,
s
to

re
d
 i
n

 a

re
tr

ie
v
a
l
s
y
s
te

m
,

o
r

tr
a
n
s
m

it
te

d
 i
n
 a

n
y
 f

o
rm

 o
r

b
y
 a

n
y
 m

e
a
n
s
,

e
le

c
tr

o
n
ic

,
m

e
c
h
a
n
ic

a
l,
 p

h
o
to

c
o
p
y
in

g
,
re

c
o
rd

in
g
 o

r
o
th

e
rw

is
e
,
w

it
h
o
u
t
th

e
 p

ri
o

r
w

ri
tt
e
n
 p

e
rm

is
s
io

n
 o

f
b
fs

i
s
o
ft
w

a
re

 c
o
n
s
u
lt
in

g
 p

v
t.
lt
d

 BFSImAx – Architecture Document

 Security features such login authentication
 Enabling data encryption via the mAxVault feature
 Audit trail tracking
 System parameter maintenance
 Language resource files to enable users to use the system in their native language

IBS Synch

The synchronization of a device with the IBS is always initiated by the device. The IBS synch
component sends all new transactions done by the agent to the IBS and receives updated customer
and account data from the IBS. Only data which is relevant to that device is received from the IBS.

2.3 Functional Architecture of the IBS

The IBS performs the following functions :
1. Enables IT admin to set up and manage agent mobile devices
2. Enables bank staff (credit officers, loan managers, agent co-ordinators etc.) to track and manage

agents and the cash which is in their custody
3. Gets the latest customer and account information via its CBS interfaces, decides what data has to

go to which device and sends it when that device synchs next
4. Synchs with an agent’s device, receives the transactions done on that device and sends them to

the CBS

Page 10 of 28

<<Bank
Name>>

1. Testing

 Imple

©
 2

0
1
2
 b

fs
i
s
o
ft
w

a
re

 c
o
n
s
u
lt
in

g
 p

v
t.

lt
d
 -

 A
ll

ri
g

h
ts

 r
e
s
e
rv

e
d
.
N

o
 p

a
rt

 o
f

th
is

 w
o
rk

 m
a

y
 b

e
 r

e
p
ro

d
u
c
e
d
,
s
to

re
d
 i
n

 a

re
tr

ie
v
a
l
s
y
s
te

m
,

o
r

tr
a
n
s
m

it
te

d
 i
n
 a

n
y
 f

o
rm

 o
r

b
y
 a

n
y
 m

e
a
n
s
,

e
le

c
tr

o
n
ic

,
m

e
c
h
a
n
ic

a
l,
 p

h
o
to

c
o
p
y
in

g
,
re

c
o
rd

in
g
 o

r
o
th

e
rw

is
e
,
w

it
h
o
u
t
th

e
 p

ri
o

r
w

ri
tt
e
n
 p

e
rm

is
s
io

n
 o

f
b
fs

i
s
o
ft
w

a
re

 c
o
n
s
u
lt
in

g
 p

v
t.
lt
d

 BFSImAx – Architecture Document

Given that the IBS is to be used primarily by bank staff, usually in the bank’s premises, it is
architected as a conventional client-server system with a centralized deployment and a browser
client. Based on the above requirements, its main functional components are described

Transactions Layer

All the transactions which are sent by the various devices are stored and managed in this layer. Once
a new transaction is synched from a device, it enters a transaction queue. The system business logic
then determines what processing is to be done on that transaction. Some transactions are flagged off
for STP to the CBS whereas some others are held back for scrutiny by a bank manager who
ultimately rejects or clears them. In future releases, a customizable business process should be
triggered off for each transaction which is held back for scrutiny.

The transaction layer also interacts with the Logistics layer so that cash positions of each agent can
be updated.

In the normal course, most banking transactions impact an account’s history and balance – e.g.
withdrawals impact a savings account, redemptions impact a term deposit and repayments impact a
loan account. However, in BFSImAx, the transactions coming from the device are not processed e.g.
upon receiving a repayment or disbursal transaction the IBS does not update the loan account.
Instead these transactions are sent to the CBS and the updated loan account is received from the
CBS.

Banking Data Layer

This layer of the BFSImAx – IBS contains all the banking data which is required for the system to
function. This includes customer records, loan accounts and their history of transactions, foreign
exchange rates, different products etc. All of this data is sourced from the CBS and relevant data is
then supplied to each device based on that agent’s requirements.

There is a slight difference between how the MBS treats account data and how the IBS treats this
data. Since this data is sourced from the CBS, the IBS treats the CBS as the gold copy and does not
alter it. However, Core
Banking Systems have
traditionally not been built for
rural banking or for agent
based banking and hence this
data may not be sufficient for
the purposes of BFSImAx. In
such situations, functionality
will need to be built in this
layer to augment this data.

For example, BFSImAx
needs every loan account to
be assigned to an agent but
the CBS may not have the
concept of an agent. In such
a situation, BFSImAx will
have to build screens which
will allow a user to link a loan
account with an agent and
store that linkage. It could

Page 11 of 28

<<Bank
Name>>

1. Testing

 Imple

©
 2

0
1
2
 b

fs
i
s
o
ft
w

a
re

 c
o
n
s
u
lt
in

g
 p

v
t.

lt
d
 -

 A
ll

ri
g

h
ts

 r
e
s
e
rv

e
d
.
N

o
 p

a
rt

 o
f

th
is

 w
o
rk

 m
a

y
 b

e
 r

e
p
ro

d
u
c
e
d
,
s
to

re
d
 i
n

 a

re
tr

ie
v
a
l
s
y
s
te

m
,

o
r

tr
a
n
s
m

it
te

d
 i
n
 a

n
y
 f

o
rm

 o
r

b
y
 a

n
y
 m

e
a
n
s
,

e
le

c
tr

o
n
ic

,
m

e
c
h
a
n
ic

a
l,
 p

h
o
to

c
o
p
y
in

g
,
re

c
o
rd

in
g
 o

r
o
th

e
rw

is
e
,
w

it
h
o
u
t
th

e
 p

ri
o

r
w

ri
tt
e
n
 p

e
rm

is
s
io

n
 o

f
b
fs

i
s
o
ft
w

a
re

 c
o
n
s
u
lt
in

g
 p

v
t.
lt
d

 BFSImAx – Architecture Document

also happen that a CBS may not allow disbursal schedules to be defined for a loan with manual
disbursals. However, in an agent based scenario, the bank may wish to define the proposed date and
amount of disbursal (in other words, a manual disbursal schedule) and make it part of the agent’s
daily agenda. Once again, it is BFSImAx – IBS which will provide users with a screen which allows
them to define the proposed date and amount of the next disbursal of a loan.

Thus the BFSImAx – IBS may need to augment the CBS data in order to make the banking data
complete for its purposes. However, the MBS never updates or augments this data. For the MBS, this
data is totally hands-off, it comes from the IBS and is not touched thereafter.

It should however be noted that storage of this augmented needs to be designed in such a way that
there is a physical and logical separation between the data which comes from the CBS and the data
which is captured at the IBS. This will make the CBS interface simpler, allowing it to overwrite existing
CBS data - instead of the more complicated approach of ascertaining what has changed and
updating it.

Logistics Layer

This layer of the IBS is used by the bank to manage the entire ecosystem of the devices, the agents
and the other stakeholders. This is the layer in which system administrators define the bank staff and
decide what role they can perform in the system. Similarly, features to define agents and help their
supervisors manage them also belong to this layer. For example, this layer helps bank staff keep
track of the cash position of the agent and assign work to them. In addition, this layer also allows the
bank to set up devices and manage them.

Infrastructure Layer

As in the Mobile Banking System, this layer of the IBS contains functionality which is not complete in
itself – and which is not useful to a user unless coupled with a system transaction - but provides basic
building blocks to be used by all other layers. Some of the features provided by this layer are:

 Listing of user actions and entitlements
 Audit trail tracking
 Change history maintenance
 System parameter maintenance
 Language resource files to enable users to use the system in their native language
 Security features such login authentication

Device Synch

The synchronization of a device with the IBS is always initiated by the device. The IBS synch
component receives transactions from the agent MBS and puts them in the IBS transaction queue. In
addition, it checks all the banking data on the IBS and sends the relevant data to that device. The
synch is designed in such a manner that data is sent only once to the device and not every time on
successive synch operations – unless the same data has been updated by the CBS and a new copy
has been received from the CBS.

It is possible that a device may not be able to synch due to hardware fault or some other reason. For
this reason there should be a transaction/function on the IBS which retrieves data from a device
which cannot synch.

Page 12 of 28

<<Bank
Name>>

1. Testing

 Imple

©
 2

0
1
2
 b

fs
i
s
o
ft
w

a
re

 c
o
n
s
u
lt
in

g
 p

v
t.

lt
d
 -

 A
ll

ri
g

h
ts

 r
e
s
e
rv

e
d
.
N

o
 p

a
rt

 o
f

th
is

 w
o
rk

 m
a

y
 b

e
 r

e
p
ro

d
u
c
e
d
,
s
to

re
d
 i
n

 a

re
tr

ie
v
a
l
s
y
s
te

m
,

o
r

tr
a
n
s
m

it
te

d
 i
n
 a

n
y
 f

o
rm

 o
r

b
y
 a

n
y
 m

e
a
n
s
,

e
le

c
tr

o
n
ic

,
m

e
c
h
a
n
ic

a
l,
 p

h
o
to

c
o
p
y
in

g
,
re

c
o
rd

in
g
 o

r
o
th

e
rw

is
e
,
w

it
h
o
u
t
th

e
 p

ri
o

r
w

ri
tt
e
n
 p

e
rm

is
s
io

n
 o

f
b
fs

i
s
o
ft
w

a
re

 c
o
n
s
u
lt
in

g
 p

v
t.
lt
d

 BFSImAx – Architecture Document

CBS Interface

The CBS interface should ideally be a continuously running daemon. However, it can also be a user
initiated process or a process triggered by some event in the CBS (e.g. end of day completion). This
interface sends all transactions received from various devices (except those kept on hold) to the CBS.

In addition, it gets from the CBS all the customers and accounts (currently loans and perhaps later
deposits and savings/current accounts too) which have changed since they were last updated to
BFSImAx. The interface should be intelligent enough to select only those customers and accounts
which have changed in a manner which impacts BFSImAx. E.g. accrual of the interest on a loan is a
change which does not impact BFSImAx but when a repayment is done by a customer it does.
Hence, the selection logic of the CBS interface needs to be suitably coded so that needless traffic
between the two systems is not generated.

2.4 Technical Architecture of the MBS

The device software of the BFSImAx system has been built to run on Android devices, hence it will be
developed using the Android Java platform. All layers of the application - UI, business logic and data
access – will be built using features provided by the Dalvik VM and some standard libraries available
for it. This will keep the application not only architecturally simple but will also ease the developer
learning curve and (hopefully) increase the deployment stability.

The UI will be built using standard Android Java views. The business logic components will be simple
Java objects and so will the data access layer.

In the MBS architecture, only the DAL is data storage aware. In the business logic layer, all data
(entities, transactions etc.) are represented either as Javabeans or as data variables/objects within
the relevant Java classes. This allows developers to code in an object oriented fashion rather than
manipulate database
rows or XML
documents.

The transformation
into database rows
and XML/JSON files is
done in the DAL only.
This allows two critical
design decisions to be
encapsulated within
the DAL and shields
the rest of the
application from
changes in these.
Firstly, the BFSImAx-
MBS stores data in
both the SQLite
database and as files
in the file system (see
section 3.1). Confining
access to these two
storage mechanisms

Page 13 of 28

<<Bank
Name>>

1. Testing

 Imple

©
 2

0
1
2
 b

fs
i
s
o
ft
w

a
re

 c
o
n
s
u
lt
in

g
 p

v
t.

lt
d
 -

 A
ll

ri
g

h
ts

 r
e
s
e
rv

e
d
.
N

o
 p

a
rt

 o
f

th
is

 w
o
rk

 m
a

y
 b

e
 r

e
p
ro

d
u
c
e
d
,
s
to

re
d
 i
n

 a

re
tr

ie
v
a
l
s
y
s
te

m
,

o
r

tr
a
n
s
m

it
te

d
 i
n
 a

n
y
 f

o
rm

 o
r

b
y
 a

n
y
 m

e
a
n
s
,

e
le

c
tr

o
n
ic

,
m

e
c
h
a
n
ic

a
l,
 p

h
o
to

c
o
p
y
in

g
,
re

c
o
rd

in
g
 o

r
o
th

e
rw

is
e
,
w

it
h
o
u
t
th

e
 p

ri
o

r
w

ri
tt
e
n
 p

e
rm

is
s
io

n
 o

f
b
fs

i
s
o
ft
w

a
re

 c
o
n
s
u
lt
in

g
 p

v
t.
lt
d

 BFSImAx – Architecture Document

in the DAL will mean that any subsequent changes to these will also impact the DAL only. Secondly,
all data stored in the file system is encrypted (see section 3.2) and having a DAL will mean that only
certain specific code components need to be aware of the encryption mechanism.

When coding read or write access to existing data in the business logic layer, developers
need to ensure that their code works with the data objects provided by the DAL and not with the
physical data. Similarly when writing business logic which stores and accesses new kinds of data,
developers need to break their code into distinct business logic and DAL layers.

2.5 Technical Architecture of the IBS

The IBS has been designed as an OS independent Java application. While it is an enterprise
application, it has been designed to not require a J2EE server. Instead, a web server which supports
JSFs – e.g. Tomcat – will suffice. Since BFSImAx will run in a web server and not a J2EE server, the
Spring framework will be used to provide some of the functionality like security, JDBC access etc.

UI Layer

The base UI and MVC framework used is JSF2 and the component library used is PrimeFaces. This
combination of JSF with PrimeFaces will allow the application to be web based and still have a rich
look and feel. JSF is a mature and stable paradigm which is widely supported by vendors.
PrimeFaces (along with RichFaces and ICEfaces) is one of the three most widely used component
libraries and has emerged as the leader, not only in terms of number of components but, as
anectodal evidence suggests, also in terms of performance and awareness. Spring security will be
used for
authentication
whenever a page is
invoked.

The screens of
BFSImAx-IBS will
use templating to
ensure that
common
functionality is
maintained in every
screen (see
Section 3.4 for
details). Within the
templates and in
the main form itself
PrimeFaces
components will be
used as the UI
components on the
screen.

The backing bean
of each page will
be used to capture

http://www.primefaces.org/showcase/ui/home.jsf
http://www.java101.net/thread/viewthread.xhtml;jsessionid=ad375c89c4eccc2b4a0addd34a59?id=284
http://www.google.com/trends/explore#q=primefaces%2C%20richfaces%2C%20icefaces&date=9%2F2011%2029m&cmpt=q

Page 14 of 28

<<Bank
Name>>

1. Testing

 Imple

©
 2

0
1
2
 b

fs
i
s
o
ft
w

a
re

 c
o
n
s
u
lt
in

g
 p

v
t.

lt
d
 -

 A
ll

ri
g

h
ts

 r
e
s
e
rv

e
d
.
N

o
 p

a
rt

 o
f

th
is

 w
o
rk

 m
a

y
 b

e
 r

e
p
ro

d
u
c
e
d
,
s
to

re
d
 i
n

 a

re
tr

ie
v
a
l
s
y
s
te

m
,

o
r

tr
a
n
s
m

it
te

d
 i
n
 a

n
y
 f

o
rm

 o
r

b
y
 a

n
y
 m

e
a
n
s
,

e
le

c
tr

o
n
ic

,
m

e
c
h
a
n
ic

a
l,
 p

h
o
to

c
o
p
y
in

g
,
re

c
o
rd

in
g
 o

r
o
th

e
rw

is
e
,
w

it
h
o
u
t
th

e
 p

ri
o

r
w

ri
tt
e
n
 p

e
rm

is
s
io

n
 o

f
b
fs

i
s
o
ft
w

a
re

 c
o
n
s
u
lt
in

g
 p

v
t.
lt
d

 BFSImAx – Architecture Document

the data of the page and to process it once it is submitted. However, within the backing bean, the
normal paradigm of mapping UI data to backing bean attributes will not be used, instead a separately
defined ViewDTO will be used within the backing bean to capture the form data. This will enable a
neat separation of the data entities from the UI logic and will ensure that any future migrations to
some other technology in the UI layer do not affect the business logic, as long as they produce the
same DTO.

Business and DAO Layers

The business logic and DAO layers will be implemented as standard Java objects (POJOs). The DAO
layer will implement the standard CRUD operations of data which is maintained in the IBS. This
separation will ensure that the business logic is
separated from the code which concerns itself
with physical data access. The communication
between the DAO and the business logic layers
will be through BusinessDTOs. This will enable a
neat separation of the persistence data from the
business logic and will ensure that what is
communicated between the business logic and
the DAO layers is only the persisted data – without any intermediate data used for business
processing being added to it.

The following sequence diagram (from the Oracle web site) explains this interaction.

This separation of BL and DAO will ensure that the business logic is separated from the code which
concerns itself with physical data access and will be shielded from both the physical storage
mechanism and the logic of transforming from object to relational data. For example, in the case of
BFSImAx-IBS, an object-relational mapping tool is currently not being used and Spring JDBC will be
used to read and write to the database. In case this is to be changed in the future and Hibernate is to
be used, the change will be in the DAO layer only and as long as the new DAO takes and receives

http://www.oracle.com/technetwork/java/dataaccessobject-138824.html

Page 15 of 28

<<Bank
Name>>

1. Testing

 Imple

©
 2

0
1
2
 b

fs
i
s
o
ft
w

a
re

 c
o
n
s
u
lt
in

g
 p

v
t.

lt
d
 -

 A
ll

ri
g

h
ts

 r
e
s
e
rv

e
d
.
N

o
 p

a
rt

 o
f

th
is

 w
o
rk

 m
a

y
 b

e
 r

e
p
ro

d
u
c
e
d
,
s
to

re
d
 i
n

 a

re
tr

ie
v
a
l
s
y
s
te

m
,

o
r

tr
a
n
s
m

it
te

d
 i
n
 a

n
y
 f

o
rm

 o
r

b
y
 a

n
y
 m

e
a
n
s
,

e
le

c
tr

o
n
ic

,
m

e
c
h
a
n
ic

a
l,
 p

h
o
to

c
o
p
y
in

g
,
re

c
o
rd

in
g
 o

r
o
th

e
rw

is
e
,
w

it
h
o
u
t
th

e
 p

ri
o

r
w

ri
tt
e
n
 p

e
rm

is
s
io

n
 o

f
b
fs

i
s
o
ft
w

a
re

 c
o
n
s
u
lt
in

g
 p

v
t.
lt
d

 BFSImAx – Architecture Document

the same DTO, the BL layer shall remain unchanged. Similarly, there may be changes in the physical
access to data and the BL will again be shielded from these changes. Such changes are eminently
possible in our case since the IBS is really an intermediary system which will have to interact with the
CBS - and possibly other departmental systems as it caters to different types of transactions.

Designing business objects (complete with a full set of attributes) and a separate DTO which mimics
the BO attributes is a cumbersome task which will lead not only to complications in coding but also at
deployment time. However, the BFSImAx-IBS is a system meant primarily for data flow and only
secondarily for business processing and the DTO paradigm mirrors this data flow philosophy. Hence
a way needs to be found to use DTOs without creating unnecessary heaviness. There should
therefore be no duplication of attributes between the business object and the DTO. In other words,
the DTO should be designed as the attributes of the BO itself and should be embedded in it. In that
sense, the separation between the BO and the DTO is not so much that they are independent objects
with different attributes (as shown in the above diagrams). Instead, the DTO should be viewed as that
part of the BO which can be detached and transferred to the DAO layer

 All backing beans in the UI layer should be coded with a separate DTO encapsulating the
screen data and this DTO should be used to communicate with the BL layer. Similarly, all business
entities in the business logic layer should be coded with a DTO holding the entity data and the
complete business object should not be passed to the DAO layer. Neither the UI backing beans nor
the business logic should directly access the physical data via JDBC calls.

In the previous section, it was described how the backing bean of a page should encapsulate the data
within a ViewDTO and this ViewDTO should be passed to the business logic for processing. Similarly,
we discussed in this section that a BusinessDTO should be used to pass the persistence data back
and forth between the business logic and DAO layers. In most cases these two objects will be nearly
(or completely) identical and should be designed as one object. Moreover, having a two separate
DTOs and a third BO in the same transaction is too cumbersome and should be avoided unless there
are good reasons for it. This unification in design will save the effort of transforming from one to the
other and the same object can be used across the UI, business and data access layers, thereby
abstracting the data communicated between these layers from the presentation logic, business logic
and data access logic inherent in these layers.

 When designing a maintenance transaction – i.e. a transaction in which data will be
created, edited and viewed (e.g. device maintenance) - designers/programmers should first design
the relational data structure and the relevant screen, then the BusinessDTO and then assess if the
same BusinessDTO can be used as the ViewDTO also. The same approach can be taken for any
financial transactions also. When considering view only screens, it is assumed that the data structure
is already given. Hence designers/programmers should first design the screen and then see if any
existing DTO fits the purpose. If there is none, then a ViewDTO should be designed for that screen.

Page 16 of 28

<<Bank
Name>>

1. Testing

 Imple

©
 2

0
1
2
 b

fs
i
s
o
ft
w

a
re

 c
o
n
s
u
lt
in

g
 p

v
t.

lt
d
 -

 A
ll

ri
g

h
ts

 r
e
s
e
rv

e
d
.
N

o
 p

a
rt

 o
f

th
is

 w
o
rk

 m
a

y
 b

e
 r

e
p
ro

d
u
c
e
d
,
s
to

re
d
 i
n

 a

re
tr

ie
v
a
l
s
y
s
te

m
,

o
r

tr
a
n
s
m

it
te

d
 i
n
 a

n
y
 f

o
rm

 o
r

b
y
 a

n
y
 m

e
a
n
s
,

e
le

c
tr

o
n
ic

,
m

e
c
h
a
n
ic

a
l,
 p

h
o
to

c
o
p
y
in

g
,
re

c
o
rd

in
g
 o

r
o
th

e
rw

is
e
,
w

it
h
o
u
t
th

e
 p

ri
o

r
w

ri
tt
e
n
 p

e
rm

is
s
io

n
 o

f
b
fs

i
s
o
ft
w

a
re

 c
o
n
s
u
lt
in

g
 p

v
t.
lt
d

 BFSImAx – Architecture Document

3 DESIGN NOTES

While the previous chapter describes the overall architecture, this chapter goes into the next level of
detail on some issues which need farther detailing before a comprehensive design can be done on
some of them.

3.1 MBS Data Storage

The application will store all images and transactions in the file system. Images will not be indexed
and hence need not be stored in the database for access reasons and storing images in the file
system will reduce the chances of the database bloating. Also, larger images are often faster to

access from the file system than from inside a SQLite database. A link to the image file will be kept in
the customer record.

Transactions done by the agent will also be stored in the file system in JSON format. However, these
will be stored encrypted so that no user can gain access to them except through the application. For
details of encryption see section 3.2

All query-able data will be stored in the SQLite database. Here queried data is being differentiated
from viewed data. The former is queried via select queries which scan large amounts of data whereas
the latter is viewed or accessed after a particular key has been zeroed in on. Keeping queried data in
the database will ensure that indexes can be used to speed up queries. Hence even though
transactions are stored encrypted in the file system, certain attributes of the transaction (e.g. type,
customer, date etc.) are stored in the database for ease of retrieval. In addition to this, the entire IBS
data (customers, accounts etc.) is also stored in the database.

http://www.sqlite.org/intern-v-extern-blob.html

Page 17 of 28

<<Bank
Name>>

1. Testing

 Imple

©
 2

0
1
2
 b

fs
i
s
o
ft
w

a
re

 c
o
n
s
u
lt
in

g
 p

v
t.

lt
d
 -

 A
ll

ri
g

h
ts

 r
e
s
e
rv

e
d
.
N

o
 p

a
rt

 o
f

th
is

 w
o
rk

 m
a

y
 b

e
 r

e
p
ro

d
u
c
e
d
,
s
to

re
d
 i
n

 a

re
tr

ie
v
a
l
s
y
s
te

m
,

o
r

tr
a
n
s
m

it
te

d
 i
n
 a

n
y
 f

o
rm

 o
r

b
y
 a

n
y
 m

e
a
n
s
,

e
le

c
tr

o
n
ic

,
m

e
c
h
a
n
ic

a
l,
 p

h
o
to

c
o
p
y
in

g
,
re

c
o
rd

in
g
 o

r
o
th

e
rw

is
e
,
w

it
h
o
u
t
th

e
 p

ri
o

r
w

ri
tt
e
n
 p

e
rm

is
s
io

n
 o

f
b
fs

i
s
o
ft
w

a
re

 c
o
n
s
u
lt
in

g
 p

v
t.
lt
d

 BFSImAx – Architecture Document

3.2 MBS Encryption Strategy

The MBS needs to encrypt two separate kinds of data. Firstly, when the user logs in with her
password, it needs to be authenticated against an encrypted form of the password which is stored
within the application. This encryption will be done using the SHA-256 hashing algorithm which is
supported by Android. In addition, the password will be transformed using the PBKDF2 methodology
(also used later for transaction encryption). Whenever the user supplied her password, it will be
hashed using the same PBKDF2 methodology and the resultant value will be compared using the
hashed value stored on disk. On disk, the hashed password will be stored in SharedPreferences
storage mechanism which Android provides for private data.

The second kind of data which needs to be encrypted is the transaction files stored on disk. The
objective is that no one should be able to access the unencrypted data in these files except when
viewing it through the BFSImAx-MBS application. These files will be encrypted using the AES
algorithm, which is one of the most secure symmetric algorithms in widespread use and is expected
to be unbreakable for several years to come. In future releases, authenticated encryption can be
incorporated by using AES-GCM.

However, while the data itself may be secure, the key used to encrypt the data needs to be kept on
disk and is, therefore, insecure. It is therefore best to use a key based on a user supplied value (e.g.
the user password) so that anyone accessing the encrypted file (other than the user herself) does not
know the key used for encryption. The user supplies this password every time she logs in and it is
never stored in clear text on the device. This method has the drawback that when the user changes
her password, all the encrypted transactions need to be decrypted using the key based on the old
password and re-encrypted using the key based on the new password. This will make the password
change transaction too cumbersome and prone to failure.

Secondly, we also want to design an encryption scheme whereby transactions on the device can be
decrypted on the server, by authorized admin users, even without knowing the device user’s
password. Moreover, we don’t want an encryption scheme in which the data cannot be decrypted if
the device user forgets her password.

To overcome these drawbacks in simple password based encryption and to still keep the transaction
key secure, BFSImAx-MBS uses a two level key mechanism. In the first level, the key with which the
transaction file is AES-encrypted is randomly generated. This makes the transaction file extra secure
since it is not only encrypted using a very secure algorithm but the key too is randomly generated,
making it much more secure than a user supplied key.

In the second level, the randomly generated AES key is itself AES-encrypted, using a data key. This
data key is generated (using the keyGenerator class in Java cryptography) when the application is
installed and the agent logs in for the first time. Since the first login is a connected transaction, this
data key is sent to the server and stored in the device record in the IBS. Using this data key, the
device data can be decrypted by an authorized IBS user, if required.

On the device, this data key is encrypted using AES and its encrypted form is stored in
SharedPreferences. The key used for encrypting & decrypting the data key is the user password
itself. However, since user supplied passwords are notoriously insecure as encryption keys, a
password based key derivation function is used to derive a secure key from the data password. The
specific function used is PBKDF2, which is published by RSA and is considered the most secure way
to encrypt data using a user supplied password. PBKDF2 uses salting and key extension to derive a
key based on the supplied password. Refer here, here, here and elsewhere for details.

https://crackstation.net/hashing-security.htm
http://developer.android.com/guide/topics/data/data-storage.html#pref
http://en.wikipedia.org/wiki/NSA_Suite_B_Cryptography
http://en.wikipedia.org/wiki/Authenticated_encryption
http://stackoverflow.com/questions/13420065/data-encryption-on-android-aes-gcm-or-plain-aes
http://nelenkov.blogspot.in/2012/04/using-password-based-encryption-on.html
http://android-developers.blogspot.in/2013/02/using-cryptography-to-store-credentials.html
ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-5v2/pkcs5v2-0.pdf

Page 18 of 28

<<Bank
Name>>

1. Testing

 Imple

©
 2

0
1
2
 b

fs
i
s
o
ft
w

a
re

 c
o
n
s
u
lt
in

g
 p

v
t.

lt
d
 -

 A
ll

ri
g

h
ts

 r
e
s
e
rv

e
d
.
N

o
 p

a
rt

 o
f

th
is

 w
o
rk

 m
a

y
 b

e
 r

e
p
ro

d
u
c
e
d
,
s
to

re
d
 i
n

 a

re
tr

ie
v
a
l
s
y
s
te

m
,

o
r

tr
a
n
s
m

it
te

d
 i
n
 a

n
y
 f

o
rm

 o
r

b
y
 a

n
y
 m

e
a
n
s
,

e
le

c
tr

o
n
ic

,
m

e
c
h
a
n
ic

a
l,
 p

h
o
to

c
o
p
y
in

g
,
re

c
o
rd

in
g
 o

r
o
th

e
rw

is
e
,
w

it
h
o
u
t
th

e
 p

ri
o

r
w

ri
tt
e
n
 p

e
rm

is
s
io

n
 o

f
b
fs

i
s
o
ft
w

a
re

 c
o
n
s
u
lt
in

g
 p

v
t.
lt
d

 BFSImAx – Architecture Document

The following sections explain how this encryption strategy is to be used in different application
scenarios.

On First Login

On first login after installation, the MBS should undertake the following actions for encryption:

1. Make the user change her password to one of her choice.
2. Generate a random salt and create a PBKDF2 hash of the password.
3. Store the user password salt and the encrypted user password in SharedPreferences.
4. Generate a random AES 256-bit key as the data key.
5. Send this data key to the IBS (in an https session), to be stored against this device id.
6. Generate a random salt and create a PBKDF2 hash of the user password. Although based

on the user password, this salt and hash value are different from the salt and hash value
obtained in step 2.

7. AES-encrypt the data key, using the PBKDF2 hash of step 6 as the encryption key.
8. Store the data key salt of step 6 and the encrypted data key of step 7 in SharedPreferences.

Do not store the PBKDF2 hash obtained in step 6.

On Every Subsequent Login

1. Let the user enter her login password.
2. Retrieve the user password salt from SharedPreferences.
3. Create the PBKDF2 hash of the user password using the salt retrieved in step 2.
4. Retrieve the encrypted user password from SharedPreferences.
5. Compare the values obtained in steps 3 and 4. If they are identical, allow the user to login

otherwise the login has failed.

Page 19 of 28

<<Bank
Name>>

1. Testing

 Imple

©
 2

0
1
2
 b

fs
i
s
o
ft
w

a
re

 c
o
n
s
u
lt
in

g
 p

v
t.

lt
d
 -

 A
ll

ri
g

h
ts

 r
e
s
e
rv

e
d
.
N

o
 p

a
rt

 o
f

th
is

 w
o
rk

 m
a

y
 b

e
 r

e
p
ro

d
u
c
e
d
,
s
to

re
d
 i
n

 a

re
tr

ie
v
a
l
s
y
s
te

m
,

o
r

tr
a
n
s
m

it
te

d
 i
n
 a

n
y
 f

o
rm

 o
r

b
y
 a

n
y
 m

e
a
n
s
,

e
le

c
tr

o
n
ic

,
m

e
c
h
a
n
ic

a
l,
 p

h
o
to

c
o
p
y
in

g
,
re

c
o
rd

in
g
 o

r
o
th

e
rw

is
e
,
w

it
h
o
u
t
th

e
 p

ri
o

r
w

ri
tt
e
n
 p

e
rm

is
s
io

n
 o

f
b
fs

i
s
o
ft
w

a
re

 c
o
n
s
u
lt
in

g
 p

v
t.
lt
d

 BFSImAx – Architecture Document

To Encrypt a Transaction File

1. Obtain the user’s login password.
2. Retrieve the data key salt from SharedPreferences.
3. Using the salt retrieved in step 2, create the PBKDF2 hash of the user password.
4. Retrieve the encrypted data key from SharedPreferences.
5. Using the PBKDF2 hash of step 3 as the AES decryption key, decrypt the data key retrieved

in step 4. We now have the plain text data key.
6. Generate a random 256 bit AES key to encrypt the transaction file.
7. Encrypt the transaction file using the transaction key of step 6 and store the file on disk. Store

a reference to the file in the SQLite database.
8. AES encrypt the transaction key of step 6 using the data key obtained in step 5. Store the

encrypted transaction on disk.
9. Encrypt the transaction key of step 6 using the data key of step 5 as the key. Store this

encrypted transaction key in the SQLite database along with the reference to the transaction
file.

To Decrypt a Transaction File

When decrypting a transaction which is to be viewed, the following sequence should be followed:

1. Obtain the user’s login password.
2. Retrieve the data key salt from SharedPreferences.
3. Using the salt retrieved in step 2, create the PBKDF2 hash of the user password.
4. Retrieve the encrypted data key from SharedPreferences.
5. Using the PBKDF2 hash of step 3 as the AES decryption key, decrypt the data key retrieved

in step 4. We now have the plain text data key.
6. Retrieve the encrypted transaction key from the SQLite database along with the reference to

the transaction file.
7. Decrypt the transaction key of step 6 using the data key of step 5. We now have the plain text

transaction key.
8. Use the decrypted transaction key of step 7 to decrypt the transaction file.

On User Password Change

When the user wishes to change her password, the following steps should be followed:

1. Let the user enter her old login password. Check if it is the correct password by doing the
normal password correctness check.

2. Retrieve the data key salt from SharedPreferences.
3. Using the salt retrieved in step 2, create the PBKDF2 hash of the old user password.
4. Retrieve the encrypted data key from SharedPreferences.
5. Using the PBKDF2 hash of step 3 as the AES decryption key, decrypt the data key retrieved

in step 4. We now have the plain text data key.
6. Make the user change her password to one of her choice.
7. Generate a random salt and create a PBKDF2 hash of the new user password.
8. Store the user password salt and the encrypted user password in SharedPreferences.
9. Generate a second random salt and create a second PBKDF2 hash of the user password.

Although based on the user password, this salt and hash value are different from the salt and
hash value obtained in step 7.

10. AES-encrypt the data key (obtained in step 5), using the PBKDF2 hash of step 7 as the
encryption key.

11. Store the data key salt of step 9 and the encrypted data key of step 10 in SharedPreferences.
Do not store the PBKDF2 hash obtained in step 9.

12. There is no need to decrypt and encrypt either the transaction files or their transaction keys
since the data key has not changed.

Page 20 of 28

<<Bank
Name>>

1. Testing

 Imple

©
 2

0
1
2
 b

fs
i
s
o
ft
w

a
re

 c
o
n
s
u
lt
in

g
 p

v
t.

lt
d
 -

 A
ll

ri
g

h
ts

 r
e
s
e
rv

e
d
.
N

o
 p

a
rt

 o
f

th
is

 w
o
rk

 m
a

y
 b

e
 r

e
p
ro

d
u
c
e
d
,
s
to

re
d
 i
n

 a

re
tr

ie
v
a
l
s
y
s
te

m
,

o
r

tr
a
n
s
m

it
te

d
 i
n
 a

n
y
 f

o
rm

 o
r

b
y
 a

n
y
 m

e
a
n
s
,

e
le

c
tr

o
n
ic

,
m

e
c
h
a
n
ic

a
l,
 p

h
o
to

c
o
p
y
in

g
,
re

c
o
rd

in
g
 o

r
o
th

e
rw

is
e
,
w

it
h
o
u
t
th

e
 p

ri
o

r
w

ri
tt
e
n
 p

e
rm

is
s
io

n
 o

f
b
fs

i
s
o
ft
w

a
re

 c
o
n
s
u
lt
in

g
 p

v
t.
lt
d

 BFSImAx – Architecture Document

When The User Forgets Her Password

Decide on an alternate authentication mechanism. This may be done via the user answering a
security question or by generating a new device login password on the server and informing the user
using a secure channel. Given the sensitivity of the data on the device, the latter option is
recommended. Either way, the user has to go through a “forgot password” transaction on the device.
This transaction follows the following sequence:

1. Start a secure https session with the IBS.
2. Authenticate the user using the alternate authentication mechanism.
3. Make the user change her password to one of her choice.
4. Generate a random salt and create a PBKDF2 hash of the password.
5. Store the user password salt and the encrypted user password in SharedPreferences.
6. Get the data key (256-bit AES key) of this device from the IBS.
7. Generate a random salt and create a PBKDF2 hash of the user password. Although based

on the user password, this salt and hash value are different from the salt and hash value
obtained in step 4.

8. AES-encrypt the data key, using the PBKDF2 hash of step 7 as the encryption key.
9. Store the data key salt of step 7 and the encrypted data key of step 8 in SharedPreferences.

Do not store the PBKDF2 hash obtained in step 7.
10. There is no need to decrypt and encrypt either the transaction files on the device nor their

transaction keys since the data key has not changed.

Page 21 of 28

<<Bank
Name>>

1. Testing

 Imple

©
 2

0
1
2
 b

fs
i
s
o
ft
w

a
re

 c
o
n
s
u
lt
in

g
 p

v
t.

lt
d
 -

 A
ll

ri
g

h
ts

 r
e
s
e
rv

e
d
.
N

o
 p

a
rt

 o
f

th
is

 w
o
rk

 m
a

y
 b

e
 r

e
p
ro

d
u
c
e
d
,
s
to

re
d
 i
n

 a

re
tr

ie
v
a
l
s
y
s
te

m
,

o
r

tr
a
n
s
m

it
te

d
 i
n
 a

n
y
 f

o
rm

 o
r

b
y
 a

n
y
 m

e
a
n
s
,

e
le

c
tr

o
n
ic

,
m

e
c
h
a
n
ic

a
l,
 p

h
o
to

c
o
p
y
in

g
,
re

c
o
rd

in
g
 o

r
o
th

e
rw

is
e
,
w

it
h
o
u
t
th

e
 p

ri
o

r
w

ri
tt
e
n
 p

e
rm

is
s
io

n
 o

f
b
fs

i
s
o
ft
w

a
re

 c
o
n
s
u
lt
in

g
 p

v
t.
lt
d

 BFSImAx – Architecture Document

3.3 MBS Error and Debug Logging

Debugging of Android applications is normally done by developers by connecting the application to an
IDE on a PC and stepping through the application. However, the MBS application will be deployed on
agent devices which will not only be numerous in number but may also be inaccessible to BFSI staff
and even the bank’s IT staff. Hence it is imperative that a simple mechanism be incorporated into the
application which allow the developers to access debug information. This can be done by maintaining
a debug log on the file system and sending this log to the IBS as part of the synch.

A debug routine needs to be written which will write all debug messages to a debug file instead of to
the normal Android log. This file will work in conjunction with a debug flag.

- Upon logging in, the app will set the debug flag off.
- If required the user will set the debug flag on. This status will last only for one session.
- Programmers shall call this routine to log all debug messages
- If the debug flag is off, this routine will return without doing anything with the debug message.
- If the debug flag is off, this routine will append the debug message, with the date-time stamp,

to the debug file
- During the next synch, the synch process will send this debug file to the IBS and then delete

its contents

 During the development of the app, debug messages should not be written using the
normal logcat logging mechanism provided by Android. Instead, programmers should call the
BFSImAx-MBS debug routine.

In addition to the debug messages, the same log file should be written to whenever an unhandled
error occurs in the app. The details of how this exception will be trapped are to be worked out during
the detailed design. Some of the approaches which can be considered are using the ACRA library,
overriding the DefaultUncaughtExceptionHandler, enclosing every activity in a try/catch block or any
combination of these and other ideas.

Once the unhandled exception has been trapped, the data related to that can be written to the same
BFSImAx-MBS debug file. Apart from the date-time stamp, the activity name and the error, the
stackTrace and the relevant content from the Build object should be logged.

 Regardless of which mechanism is chosen to trap the unhandled exceptions, it will require
some code in every activity to facilitate the trapping. Programmers should ensure that they write their
activity classes in compliance with the devised standard so that trapping of unhandled exceptions
works.

http://acra.ch/
http://stackoverflow.com/questions/16561692/android-exception-handling-best-practice
http://developer.android.com/reference/android/os/Build.html

Page 22 of 28

<<Bank
Name>>

1. Testing

 Imple

©
 2

0
1
2
 b

fs
i
s
o
ft
w

a
re

 c
o
n
s
u
lt
in

g
 p

v
t.

lt
d
 -

 A
ll

ri
g

h
ts

 r
e
s
e
rv

e
d
.
N

o
 p

a
rt

 o
f

th
is

 w
o
rk

 m
a

y
 b

e
 r

e
p
ro

d
u
c
e
d
,
s
to

re
d
 i
n

 a

re
tr

ie
v
a
l
s
y
s
te

m
,

o
r

tr
a
n
s
m

it
te

d
 i
n
 a

n
y
 f

o
rm

 o
r

b
y
 a

n
y
 m

e
a
n
s
,

e
le

c
tr

o
n
ic

,
m

e
c
h
a
n
ic

a
l,
 p

h
o
to

c
o
p
y
in

g
,
re

c
o
rd

in
g
 o

r
o
th

e
rw

is
e
,
w

it
h
o
u
t
th

e
 p

ri
o

r
w

ri
tt
e
n
 p

e
rm

is
s
io

n
 o

f
b
fs

i
s
o
ft
w

a
re

 c
o
n
s
u
lt
in

g
 p

v
t.
lt
d

 BFSImAx – Architecture Document

3.4 Usage of Templates in the IBS

The various screens of any product like BFSImAx contain common elements which occur in every, or
at least many, screens. To avoid definition of these common elements in every screen, finding a way
of coding them in one place, which can be referred or inherited in all screens, is essential. Templates
provide exactly this mechanism in the JSF world and are the recommended as the inheritance
mechanism for XHTML pages.

In BFSImAx, we will use a two level templating mechanism. The first template is the one which will be
used by all the screens of the system, regardless of their nature and function. This is the application
template and it will contain functionality such as the application navigation, help, session expiry,
authentication via Spring security etc.

This application template will be the template for all form class templates. A form class template is
essentially a template which contains UI elements which are common to a class of forms.

For example, all entity
maintenance forms
need the same action
buttons for Add, Edit,
Submit etc. and they all
need the standard
BFSImAx audit trail.
Hence there can be a
maintenance.xhtml
which defines the three
divisions of the page,
explicitly codes the
action button and the
audit trail divisions and
leaves the main content
division to be inserted
later by the actual form.
All maintenance forms
would then use the
maintenance.xhtml as
their template.
Similarly, a listview
template can also be
defined at the second
level since all list forms are a class of forms with common functionality. Lastly, a generic template can
be defined which contains minimal structure/functionality common to all screens. This generic
template can be used by all screens which do not fall under the maintenance or listview templates.

 All BFSImAx-IBS pages must be based on a second level template. They should not be
coded without reference to a template and neither should they inherit directly from the application
template.

The first release of BFSImAx is likely to contain only three templates in the IBS – the maintenance
template, the listview template and the generic template. However, it is expected that as the
functionality of BFSImAx grows, the number of templates will increase. As this happens, there is a

http://docs.oracle.com/javaee/6/tutorial/doc/giqxp.html
http://stackoverflow.com/questions/12623366/facelets-template-within-another-template

Page 23 of 28

<<Bank
Name>>

1. Testing

 Imple

©
 2

0
1
2
 b

fs
i
s
o
ft
w

a
re

 c
o
n
s
u
lt
in

g
 p

v
t.

lt
d
 -

 A
ll

ri
g

h
ts

 r
e
s
e
rv

e
d
.
N

o
 p

a
rt

 o
f

th
is

 w
o
rk

 m
a

y
 b

e
 r

e
p
ro

d
u
c
e
d
,
s
to

re
d
 i
n

 a

re
tr

ie
v
a
l
s
y
s
te

m
,

o
r

tr
a
n
s
m

it
te

d
 i
n
 a

n
y
 f

o
rm

 o
r

b
y
 a

n
y
 m

e
a
n
s
,

e
le

c
tr

o
n
ic

,
m

e
c
h
a
n
ic

a
l,
 p

h
o
to

c
o
p
y
in

g
,
re

c
o
rd

in
g
 o

r
o
th

e
rw

is
e
,
w

it
h
o
u
t
th

e
 p

ri
o

r
w

ri
tt
e
n
 p

e
rm

is
s
io

n
 o

f
b
fs

i
s
o
ft
w

a
re

 c
o
n
s
u
lt
in

g
 p

v
t.
lt
d

 BFSImAx – Architecture Document

risk of proliferation of templates, thereby diluting the benefit which templates give in maintainability of
code. On the other hand, there is also a risk of having too few templates. This could lead to the
pages containing code which twists this way and that to work around template functionality or it could
lead to the template itself becoming heavier and less cohesive because it tries to cater to diverse
pages which expect unrelated (or even contradictory) template behavior. To avoid all these pitfalls,
the development process needs to incorporate a governance process for template creation and
refactoring.

 Programmers should never unilaterally create a new template or change an existing one.
Any changes to the template layer should be debated upon by a design panel and then effected.

In addition to templates, commonly used UI elements can be kept in separate XHTML files and
included in the relevant pages using the facelets:include tag. For example, the audit trail UI elements
can be kept in an uaditTrail.xhtml file and included in both the maintenance template and directly in
any other forms which inherit the generic template but show data which has an audit trail.

Page 24 of 28

<<Bank
Name>>

1. Testing

 Imple

©
 2

0
1
2
 b

fs
i
s
o
ft
w

a
re

 c
o
n
s
u
lt
in

g
 p

v
t.

lt
d
 -

 A
ll

ri
g

h
ts

 r
e
s
e
rv

e
d
.
N

o
 p

a
rt

 o
f

th
is

 w
o
rk

 m
a

y
 b

e
 r

e
p
ro

d
u
c
e
d
,
s
to

re
d
 i
n

 a

re
tr

ie
v
a
l
s
y
s
te

m
,

o
r

tr
a
n
s
m

it
te

d
 i
n
 a

n
y
 f

o
rm

 o
r

b
y
 a

n
y
 m

e
a
n
s
,

e
le

c
tr

o
n
ic

,
m

e
c
h
a
n
ic

a
l,
 p

h
o
to

c
o
p
y
in

g
,
re

c
o
rd

in
g
 o

r
o
th

e
rw

is
e
,
w

it
h
o
u
t
th

e
 p

ri
o

r
w

ri
tt
e
n
 p

e
rm

is
s
io

n
 o

f
b
fs

i
s
o
ft
w

a
re

 c
o
n
s
u
lt
in

g
 p

v
t.
lt
d

 BFSImAx – Architecture Document

3.5 The Anatomy of a Synch Session

The synchronization between the device and IBS needs to be built in such a way that it is robust
when the network is unreliable. This necessitates that it have the ability to restart from where it left off
(and not from the beginning) if the connectivity is interrupted. The synch also needs to be secure so
that financial transactions are not compromised. Given these requirements – and the architecture of
the rest of the system – the synch interaction between client and server should be designed as
follows:

Device Action

IBS Action

1 User initiates synch

2 MBS makes list of transactions to be synched
(all unsynched transactions)

3 Start a secure https (TLS) session with server The encryption cipher should be set as a
reasonably secure one. E.g. a setting of
TLS_RSA_WITH_AES_256_CBC_SHA256
will ensure that RSA is used for the
asymmetric encryption of the session key and
AES-256 is used for actual data encryption.

4 Generate an MBS synch session id

5 Call synch session start service on IBS
Send device id, MAC id, user, synch session
id to IBS

Accept data from IBS and verify
Start unauthenticated synch session

6 Accept authentication credentials from user
Send credentials to IBS
(Should we keep a synch password on the
server? Or should we use client certificates?
Is this necessary at all?)

Verify credentials and confirm to IBS
Flag off session as authenticated

7 Create list of transactions to be sent
Call sessionTranList service on IBS

8 Verify whether any transactions have already
been received in an earlier synch session
Respond to MBS with list

9 If IBS has already received any transactions,
update status and synch session for these

10 For each of the transactions to be sent to IBS
(in order of date-time stamp)

10.1 Decrypt transaction and create JSON

10.2 Update status of txn as P (under Process)

10.3 Call postTran service on IBS (over TLS
connection)

http://technet.microsoft.com/en-us/library/cc781476(WS.10).aspx

Page 25 of 28

<<Bank
Name>>

1. Testing

 Imple

©
 2

0
1
2
 b

fs
i
s
o
ft
w

a
re

 c
o
n
s
u
lt
in

g
 p

v
t.

lt
d
 -

 A
ll

ri
g

h
ts

 r
e
s
e
rv

e
d
.
N

o
 p

a
rt

 o
f

th
is

 w
o
rk

 m
a

y
 b

e
 r

e
p
ro

d
u
c
e
d
,
s
to

re
d
 i
n

 a

re
tr

ie
v
a
l
s
y
s
te

m
,

o
r

tr
a
n
s
m

it
te

d
 i
n
 a

n
y
 f

o
rm

 o
r

b
y
 a

n
y
 m

e
a
n
s
,

e
le

c
tr

o
n
ic

,
m

e
c
h
a
n
ic

a
l,
 p

h
o
to

c
o
p
y
in

g
,
re

c
o
rd

in
g
 o

r
o
th

e
rw

is
e
,
w

it
h
o
u
t
th

e
 p

ri
o

r
w

ri
tt
e
n
 p

e
rm

is
s
io

n
 o

f
b
fs

i
s
o
ft
w

a
re

 c
o
n
s
u
lt
in

g
 p

v
t.
lt
d

 BFSImAx – Architecture Document

Device Action

IBS Action

10.4 Receive transaction from IBS
Commit to transaction queue table in db
Confirm receipt to MBS

10.5 Update status of transaction as S (Sent)

10.6 Now process next Unprocessed transaction

11 Once all transactions are processed, call
service to signal end of transactions

12 Get changes, if any, to the relevant device
record on the server.

12.1 Check for unsynched changes in device
parameters and send – or confirm no changes

12.2 Update changes to device and acknowledge

12.3 Update device record as synched

13 Get changes, if any, to the relevant system
parameters on the server.

13.1 Check for unsynched changes in system
parameters and send – or confirm no changes

13.2 Update changes to device and acknowledge

13.3 Update device as having latest system
parameters

14 Get changes, if any, in the relevant agent
parameters on the server.

 Check for unsynched changes in device
parameters and send – or confirm no changes

14.2 Update changes to device and acknowledge

13.3 Update agent record as synched

14 For all the unsynched loan accounts on the
IBS, do the following:

14.1 Call the loan account service on the IBS

14.2 Check if there are any unsynched loan
accounts to be sent to this device. If yes, then
return the data for one loan account (batch
size can be used to make the synch more
efficient). If not, then return confirmation that
there are no more changes.

14.3 Update the loan accounts received from the
IBS into the SQLite database

14.4 Call the loan account ack service Update the relevant loan accounts as
synched.

Page 26 of 28

<<Bank
Name>>

1. Testing

 Imple

©
 2

0
1
2
 b

fs
i
s
o
ft
w

a
re

 c
o
n
s
u
lt
in

g
 p

v
t.

lt
d
 -

 A
ll

ri
g

h
ts

 r
e
s
e
rv

e
d
.
N

o
 p

a
rt

 o
f

th
is

 w
o
rk

 m
a

y
 b

e
 r

e
p
ro

d
u
c
e
d
,
s
to

re
d
 i
n

 a

re
tr

ie
v
a
l
s
y
s
te

m
,

o
r

tr
a
n
s
m

it
te

d
 i
n
 a

n
y
 f

o
rm

 o
r

b
y
 a

n
y
 m

e
a
n
s
,

e
le

c
tr

o
n
ic

,
m

e
c
h
a
n
ic

a
l,
 p

h
o
to

c
o
p
y
in

g
,
re

c
o
rd

in
g
 o

r
o
th

e
rw

is
e
,
w

it
h
o
u
t
th

e
 p

ri
o

r
w

ri
tt
e
n
 p

e
rm

is
s
io

n
 o

f
b
fs

i
s
o
ft
w

a
re

 c
o
n
s
u
lt
in

g
 p

v
t.
lt
d

 BFSImAx – Architecture Document

Device Action

IBS Action

14.5 Call the loan account service again, until it
returns confirmation that all loans are
synched.

15... Call other IBS services which will send data
to the device.

 Send data of the type requested

 Execute the business logic to process that
received data. Acknowledge receipt to the
IBS.

 Flag off the data as synched so that it is not
sent again.

Restart Enabled

Analysis of the above sequence will show that the synch logic is restart enabled. In other words, if it is
restarted, the device will not resend the transactions it has already sent in the earlier synch sessions.
Similarly, the IBS also will not resend the transactions it has already sent. This is ensured by the fact
that the sender picks up only unsynched transactions and sends them one by one. They are then
processed by the receiver, acknowledged to the sender and finally, flagged off as synched by the
sender. Hence, in the next synch, the sender does not pick up transactions which have already been
synched. Both the MBS and the IBS must use the database transaction management commands to
ensure that atomicity of the updates related to a single transaction are maintained.

The following table describes the possible failure points and the system features which ensure either
non-failure or self recovery when the IBS is sending transactions to the IBS.

MBS Action IBS Action Recovery Mechanism At This Point

Calls IBS service which
receives transaction from
device

Receives transaction No updates to either MBS or IBS
database. MBS resends transaction
on next synch.

 While updating transaction in
database

Database transaction management
ensures rollback.

 Post transaction commit but
before acknowledgement to
MBS

Next synch, MBS will resend the
transaction but IBS will not process it.
Instead it will just reply with the
processed status.

 Acknowledges transaction
receipt to MBS

Next synch, MBS will resend the
transaction but IBS will not process it.
Instead it will just reply with the
processed status.

Receives acknowledgement
but has not yet updated
transaction status in SQLite
database

 Next synch, MBS will resend the
transaction but IBS will not process it.
Instead it will just reply with the
processed status.

http://www.tutorialspoint.com/sqlite/sqlite_transactions.htm

Page 27 of 28

<<Bank
Name>>

1. Testing

 Imple

©
 2

0
1
2
 b

fs
i
s
o
ft
w

a
re

 c
o
n
s
u
lt
in

g
 p

v
t.

lt
d
 -

 A
ll

ri
g

h
ts

 r
e
s
e
rv

e
d
.
N

o
 p

a
rt

 o
f

th
is

 w
o
rk

 m
a

y
 b

e
 r

e
p
ro

d
u
c
e
d
,
s
to

re
d
 i
n

 a

re
tr

ie
v
a
l
s
y
s
te

m
,

o
r

tr
a
n
s
m

it
te

d
 i
n
 a

n
y
 f

o
rm

 o
r

b
y
 a

n
y
 m

e
a
n
s
,

e
le

c
tr

o
n
ic

,
m

e
c
h
a
n
ic

a
l,
 p

h
o
to

c
o
p
y
in

g
,
re

c
o
rd

in
g
 o

r
o
th

e
rw

is
e
,
w

it
h
o
u
t
th

e
 p

ri
o

r
w

ri
tt
e
n
 p

e
rm

is
s
io

n
 o

f
b
fs

i
s
o
ft
w

a
re

 c
o
n
s
u
lt
in

g
 p

v
t.
lt
d

 BFSImAx – Architecture Document

MBS Action IBS Action Recovery Mechanism At This Point

Updates transaction status to
Sent

 Next synch, this transaction will not
be sent

The data the MBS receives from the IBS has to be treated separately based on whether it needs to
be simply overwritten in the device or it needs to be updated with some business logic. Data which is
simply overwritten on the device is anyway restart friendly since a failure during the synch will mean
that a resend from the IBS will simply overwrite the data again. For data which the MBS needs to
update based on some business logic, the recovery is a little more complex, as described in the
following table.

MBS Action IBS Action Recovery Mechanism At This Point

Calls IBS service which
sends updateable data to
device

Selects transaction and
returns with date-time stamp
of last update to this
transaction

No updates to either MBS or IBS
database. IBS resends transaction on
next synch.

MBS checks date-time stamp
of the transaction copy it has.
If its own date-time stamp
matches or exceeds the
date-time stamp of the
transaction received, then it
simply returns success
without processing

 Next synch, IBS will resend the
transaction but MBS will not process
it. Instead it will just reply with the
successful/processed status.

While updating transaction in
database

 SQLite transaction management
ensures rollback.

Post transaction commit but
before acknowledgement to
MBS

 Next synch, IBS will resend the
transaction but MBS will not process
it. Instead it will just reply with the
successful/processed status.

Calls IBS service to
acknowledges transaction
receipt

Receives acknowledgement
but has not yet updated
transaction status in
database

Next synch, IBS will resend the
transaction but MBS will not process
it. Instead it will just reply with the
successful/processed status.

 Updates transaction status to
Sent

Next synch, this transaction will not
be sent

Page 28 of 28

<<Bank
Name>>

1. Testing

 Imple

©
 2

0
1
2
 b

fs
i
s
o
ft
w

a
re

 c
o
n
s
u
lt
in

g
 p

v
t.

lt
d
 -

 A
ll

ri
g

h
ts

 r
e
s
e
rv

e
d
.
N

o
 p

a
rt

 o
f

th
is

 w
o
rk

 m
a

y
 b

e
 r

e
p
ro

d
u
c
e
d
,
s
to

re
d
 i
n

 a

re
tr

ie
v
a
l
s
y
s
te

m
,

o
r

tr
a
n
s
m

it
te

d
 i
n
 a

n
y
 f

o
rm

 o
r

b
y
 a

n
y
 m

e
a
n
s
,

e
le

c
tr

o
n
ic

,
m

e
c
h
a
n
ic

a
l,
 p

h
o
to

c
o
p
y
in

g
,
re

c
o
rd

in
g
 o

r
o
th

e
rw

is
e
,
w

it
h
o
u
t
th

e
 p

ri
o

r
w

ri
tt
e
n
 p

e
rm

is
s
io

n
 o

f
b
fs

i
s
o
ft
w

a
re

 c
o
n
s
u
lt
in

g
 p

v
t.
lt
d

 BFSImAx – Architecture Document

© 2014 bfsi software consulting pvt.ltd - All rights reserved. No part of this work may be reproduced, stored in a
retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, without the prior written permission of bfsi software consulting pvt.ltd

